
Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-1Central Processing Unit

 Introduction
 3 major parts of CPU : Fig. 8-1

 1) Register Set
 2) ALU
 3) Control

 Design Examples of simple CPU
 Hardwired Control : Chap. 5
 Microprogrammed Control : Chap. 7

 In this chapter : Chap. 8
 Describe the organization and architecture of the CPU with an emphasis on the

user’s view of the computer
 User who programs the computer in machine/assembly language must be aware

of
» 1) Instruction Formats
» 2) Addressing Modes
» 3) Register Sets

 The last section presents the concept of Reduced Instruction Set Computer
(RISC)

Computer Architecture as seen by the programmer

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-2

 8-2 General Register Organization
 Register

 Memory locations are needed for storing
pointers, counters, return address, temporary
results, and partial products during multiplication
(in the programming examples of Chap. 6)

 Memory access is the most time-consuming
operation in a computer

 More convenient and efficient way is to store
intermediate values in processor registers

 Bus organization for 7 CPU registers : Fig. 8-2
 2 MUX : select one of 7 register or external data

input by SELA and SELB
 BUS A and BUS B : form the inputs to a

common ALU
 ALU : OPR determine the arithmetic or logic

micro operation
» The result of the micro operation is available for

external data output and also goes into the inputs
of all the registers

 3 X 8 Decoder : select the register (by SELD)
that receives the information from ALU

R 1

R 2

R 4

R 3

R 6

R 7

R 5

3 × 8
d e c o d e r

M U X M U X

A r i t h m e t i c l o g i c u n i t
(A L U)

C l o c k I n p u t

L o a d
(7 l i n e s)

S E L A S E L B

A b u s B b u s

O P R

O u t p u t

S E L D

(a) B l o c k d i a g r a m

(b) C o n t r o l w o r d

S E L A S E L DS E L B O P R
3 533

External Output

External Input

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-3

 Binary selector input :
 1) MUX A selector (SELA) : to place the content of R2 into BUS A
 2) MUX B selector (SELB) : to place the content of R3 into BUS B
 3) ALU operation selector (OPR) : to provide the arithmetic addition R2 + R3
 4) Decoder selector (SELD) : to transfer the content of the output bus into R1

 Control Word
 14 bit control word (4 fields) : Fig. 8-2(b)

» SELA (3 bits) : select a source register for the A input of the ALU
» SELB (3 bits) : select a source register for the B input of the ALU
» SELD (3 bits) : select a destination register using the 3 X 8 decoder
» OPR (5 bits) : select one of the operations in the ALU

 Encoding of Register Selection Fields : Tab. 8-1
» SELA or SELB = 000 (Input) : MUX selects the external input data
» SELD = 000 (None) : no destination register is selected but the contents of the output

bus are available in the external output
 Encoding of ALU Operation (OPR) : Tab. 8-2

 Examples of Microoperations : Tab. 8-3
 TSFA (Transfer A) :
 XOR :

321 RRR 

Tab. 8-1

Tab. 8-2

InputExternalOutputExternalROutputExternalRR  ,2,17
)55(05 RRXORR 

Control Word를 Control Memory에 저
장하여 Microprogrammed Control 방

식으로제어가능함

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-4

 8-3 Stack Organization
 Stack or LIFO(Last-In, First-Out)

 A storage device that stores information
» The item stored last is the first item retrieved = a stack of tray

 Stack Pointer (SP)
» The register that holds the address for the stack
» SP always points at the top item in the stack

 Two Operations of a stack : Insertion and Deletion of Items
» PUSH : Push-Down = Insertion
» POP : Pop-Up = Deletion

 Stack
» 1) Register Stack (Stack Depth가 제한)

 a finite number of memory words or register(stand alone)
» 2) Memory Stack (Stack Depth가 유동적)

 a portion of a large memory

 Register Stack : Fig. 8-3
 PUSH : A

B

CS P

E M T YF U L L

D R

6 4

0

1

2

3

4

A d d r e s s

Last Item

0
)1()0(

][
1







EMTY
FULLthenSPIf

DRSPM
SPSP : Increment SP

: Write to the stack
: Check if stack is full
: Mark not empty

SP = 0,
EMTY = 1,
FULL = 0

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-5

» The first item is stored at address 1, and the last item is stored at address 0
 POP :

 Memory Stack : Fig. 8-4
 PUSH :

» The first item is stored at address 4000
 POP :

 Stack Limits
 Check for stack overflow(full)/underflow(empty)

» Checked by using two register
 Upper Limit and Lower Limit Register

» After PUSH Operation
 SP compared with the upper limit register

» After POP Operation
 SP compared with the lower limit register

P r o g r a m
(i n s t r u c t i o n s)

D a t a
(o p e r a n d s)

S t a c k

S P

P C

A R

D R

1 0 0 0

2 0 0 0

4 0 0 1

3 0 0 0

4 0 0 0

3 9 9 9

3 9 9 8

3 9 9 7

A d d r e s s
M e m o r y u n i t

Start Here

0
)1()0(

1
][







FULL
EMTYthenSPIf

SPSP
SPMDR : Read item from the top of stack

: Decrement Stack Pointer
: Check if stack is empty
: Mark not full

DRSPM
SPSP



][
1

SP = 4001

1
][




SPSP
SPMDR

* Memory Stack
PUSH = Address 감소
* Register Stack
PUSH = Address 증가

* Error Condition
PUSH when FULL = 1
POP when EMTY = 1

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-6

 RPN (Reverse Polish Notation)
 The common mathematical method of writing arithmetic expressions imposes

difficulties when evaluated by a computer
 A stack organization is very effective for evaluating arithmetic expressions
 예제) A * B + C * D  AB * CD * + : Fig. 8-5

» (3 * 4) + (5 * 6)  34 * 56 * +

 8-4 Instruction Formats
 Fields in Instruction Formats

 1) Operation Code Field : specify the operation to be performed
 2) Address Field : designate a memory address or a processor register
 3) Mode Field : specify the operand or the effective address (Addressing Mode)

Stack을이용한Arithmetic

3 1 2

6

5

4 2

3 0

1 2

5

1 21 2

4

3

43 +*65*

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-7

 3 types of CPU organizations
 1) Single AC Org. : ADD X
 2) General Register Org. : ADD R1, R2, R3
 3) Stack Org. : PUSH X

 The influence of the number of addresses on computer instruction
[예제] X = (A + B)*(C + D)

- 4 arithmetic operations : ADD, SUB, MUL, DIV
- 1 transfer operation to and from memory and general register : MOV
- 2 transfer operation to and from memory and AC register : STORE, LOAD
- Operand memory addresses : A, B, C, D
- Result memory address : X

 1) Three-Address Instruction

» Each address fields specify either a processor register or a memory operand
»  Short program
» Require too many bit to specify 3 address

][XMACAC 

321 RRR 
][XMTOS 

X = Operand Address

ADD R1, A, B
ADD R2, C, D
MUL X, R1, R2 21][

][][2
][][1

RRXM
DMCMR
BMAMR







Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-8

 2) Two-Address Instruction

» The most common in commercial computers
» Each address fields specify either a processor register or a memory operand

 3) One-Address Instruction

» All operations are done between the AC register and memory operand

MOV R1, A
ADD R1, B
MOV R2, C
ADD R2, D
MUL R1, R2
MOV X, R1 1][

211
][22

][2
][11

][1

RXM
RRR

DMRR
CMR

BMRR
AMR










LOAD A
ADD B
STORE T
LOAD C
ADD D
MUL T
STORE X ACXM

TMACAC
DMACAC

CMAC
ACTM

BMCAAC
AMAC











][
][
][

][
][

][][
][

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-9

 4) Zero-Address Instruction

» Stack-organized computer does not use an address field for the instructions ADD, and
MUL

» PUSH, and POP instructions need an address field to specify the operand
» Zero-Address : absence of address (ADD, MUL)

 RISC Instruction
 Only use LOAD and STORE instruction when communicating between memory

and CPU
 All other instructions are executed within the registers of the CPU without

referring to memory
 RISC architecture will be explained in Sec. 8-8

PUSH A
PUSH B
ADD
PUSH C
PUSH D
ADD
MUL
POP X TOSXM

BADCTOS
DCTOS

DTOS
CTOS

BATOS
BTOS
ATOS












][
)()(

)(

)(

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-10

 Program to evaluate X = (A + B) * (C + D)

 8-5 Addressing Modes
 Addressing Mode의필요성

 1) To give programming versatility to the user
» pointers to memory, counters for loop control, indexing of data, ….

 2) To reduce the number of bits in the addressing field of the instruction
 Instruction Cycle

 1) Fetch the instruction from memory and PC + 1
 2) Decode the instruction
 3) Execute the instruction

LOAD R1, A
LOAD R2, B
LOAD R3, C
LOAD R4, D
ADD R1, R1, R2
ADD R3, R3, R4
MUL R1, R1, R3
STORE X, R1 1][

311
433
211

][4
][3
][2
][1

RXM
RRR
RRR
RRR

DMR
CMR
BMR
AMR











Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-11

 Program Counter (PC)
 PC keeps track of the instructions in the program stored in memory
 PC holds the address of the instruction to be executed next
 PC is incremented each time an instruction is fetched from memory

 Addressing Mode of the Instruction
 1) Distinct Binary Code

» Instruction Format 에 Opcode 와같이 별도에 Addressing Mode Field를 갖고 있음
 2) Single Binary Code

» Instruction Format에 Opcode 와 Addressing Mode Field가 섞여 있음

 Instruction Format with mode field : Fig. 8-6

 Implied Mode
 Operands are specified implicitly in definition of the instruction
 Examples

» COM : Complement Accumulator
 Operand in AC is implied in the definition of the instruction

» PUSH : Stack push
 Operand is implied to be on top of the stack

Opcode Mode Address

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-12

 Immediate Mode
 Operand field contains the actual operand
 Useful for initializing registers to a constant value
 Example : LD #NBR

 Register Mode
 Operands are in registers
 Register is selected from a register field in the instruction

» k-bit register field can specify any one of 2k registers
 Example : LD R1

 Register Indirect Mode
 Selected register contains the address of the operand rather than the operand

itself
  Address field of the instruction uses fewer bits to select a memory address

» Register 를 select 하는것이 bit 수가 적게소요됨
 Example : LD (R1)

 Autoincrement or Autodecrement Mode
 Similar to the register indirect mode except that

» the register is incremented after its value is used to access memory
» the register is decrement before its value is used to access memory

1RAC  Implied Mode

]1[RMAC 

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-13

 Example (Autoincrement) : LD (R1)+
 Direct Addressing Mode

 Effective address is equal to the address field of the instruction (Operand)
 Address field specifies the actual branch address in a branch-type instruction
 Example : LD ADR

 Indirect Addressing Mode
 Address field of instruction gives the address where the effective address is

stored in memory
 Example : LD @ADR

 Relative Addressing Mode
 PC is added to the address part of the instruction to obtain the effective address
 Example : LD $ADR

 Indexed Addressing Mode
 XR (Index register) is added to the address part of the instruction to obtain the

effective address
 Example : LD ADR(XR)

 Base Register Addressing Mode
 the content of a base register is added to the address part of the instruction to

obtain the effective address

111],1[ RRRMAC

ADR = Address part of Instruction
][ADRMAC 

]][[ADRMMAC 

][ADRPCMAC 

][XRADRMAC 

Not Here

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-14

 Similar to the indexed addressing mode except that the register is now called a
base register instead of an index register

» index register (XR) : LD ADR(XR)
 index register hold an index number that is relative to the address part of the instruction

» base register (BR) : LD ADR(BR)
 base register hold a base address
 the address field of the instruction gives a displacement relative to this base address

 Numerical Example



][XRADRMAC 

][ADRBRMAC 

ADR 기준

BR 기준

L o a d t o A C M o d e

A d d r e s s = 5 0 0

N e x t i n s t r u c t i o n

7 0 0

4 5 0

8 0 0

9 0 0

3 2 5

3 0 0

P C = 2 0 0

R 1 = 4 0 0

X R = 1 0 0

A C

2 0 0

7 0 2

6 0 0

5 0 0

4 0 0

3 9 9

2 0 2

2 0 1

8 0 0

A d d r e s s M e m o r y

Addressing Mode Effective Address Content of AC
 Immediate Address Mode 201 500
 Direct Address Mode 500 800
 Indirect Address Mode 800 300
 Register Mode 400
 Register Indirect Mode 400 700
 Relative Address Mode 702 325
 Indexed Address Mode 600 900
 Autoincrement Mode 400 700
 Autodecrement Mode 399 450

R1 = 400

500 + 202 (PC)

500 + 100 (XR)
R1 = 400 (after)

R1 = 400 -1 (prior)

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-15

 8-6 Data Transfer and Manipulation
 Most computer instructions can be classified into three categories:

 1) Data transfer, 2) Data manipulation, 3) Program control instructions
» Data transfer instruction cause transfer of data from one location to

another
» Data manipulation performs arithmatic, logic and shift operations.
» Program control instructions provide decision making capabilities

and change the path taken by the program when executed in
computer.

 Data Transfer Instruction
 Typical Data Transfer Instruction :

» Load : transfer from memory to a processor register, usually an AC (memory read)
» Store : transfer from a processor register into memory (memory write)
» Move : transfer from one register to another register
» Exchange : swap information between two registers or a register and a memory word
» Input/Output : transfer data among processor registers and input/output device
» Push/Pop : transfer data between processor registers and a memory stack

LD

ST

MOV

XCH

IN/OUT

PUSH/POP

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-16

MODE ASSEMBLY
CONVENTION

REGISTER TRANSFER

Direct Address LD ADR ACM[ADR]

Indirect Address LD @ADR ACM[M[ADR]]

Relative Address LD $ADR ACM[PC+ADR]

Immediate Address LD #NBR ACNBR

Index Address LD ADR(X) ACM[ADR+XR]

Register LD R1 ACR1

Register Indirect LD (R1) ACM[R1]

Autoincrement LD (R1)+ ACM[R1], R1R1+1

8 Addressing Mode for the LOAD Instruction

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-17

Data Manipulation Instruction
1) Arithmetic, 2) Logical and bit manipulation, 3) Shift Instruction

Arithmetic Instructions :

NAME MNEMONIC

Increment
Decrement
Add
Subtract
Multiply
Divide
Add with Carry
Subtract with borrow
Negate (2’s complement)

INC
DEC
ADD
SUB
MUL
DIV
ADDC
SUBB
NEG

ADDI Add two binary integer numbers

ADDF Floating point numbers

ADDD ADD TWO DECIMAL NUMBERS IN BCD

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-18

Logical and Bit Manipulation Instructions :

NAME MNEMONIC

Clear
Complement
AND
OR
Exclusive-OR
Clear Carry
Set Carry
Complement Carry
Enable Interrupt
Disable Interrupt

CLR
COM
AND
OR
XOR
CLRC
SETC
COMC
EI
DI

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-19

Shift Instructions :

NAME MNEMONIC

Logical Shift Right
Logical Shift left
Arithmetic shift right
Arithmetic shift left
Rotate right
Rotate left
Rotate right with carry
Rotate left with carry

SHR
SHL
SHRA
SHLA
ROR
ROL
RORC
ROLC

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-20

8-7 Program Control
Program Control Instruction :

Branch and Jump instructions are used interchangeably to mean the same
thing

NAME MNEMONIC

Branch
Jump
Skip
Call
Return
Compare (by subtraction)
Test (by ANDing)

BR
JMP
SKP
CALL
RET
CMP
TST

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-21

Check for zero output

V Z S C

8

Output F

8-bit ALU

F7-F0

C7

C8

88

A B

F7

Status Bit Conditions :

it is sometimes
easy to implement the ALU
in the CPU with the status
register where status bits
are used for further
analysis.

Condition Code Bit or
Flag Bit

»The bits are set or
cleared as a result of
an operation performed
in the ALU

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-22

 4-bit status register
 Bit C (carry) : set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.
 Bit S (sign) : set to 1 if the highest order bit F7 is 1 otherwise 0
 Bit Z (zero) : set to 1 if the output of the ALU contains all 0’s otherwise 0. In other

words Z=1 if the output is zero and z=0 if output is not zero.
 Bit V (overflow) : set to 1 if the exclusive-OR of the last two carries (C8 and C7) is

equal to 1
 Flag Example : A - B = A + (2’s Comp. Of B) : A =11110000, B = 00010100

11110000
+ 11101100 (2’s comp. of B)
1 11011100

C = 1, S = 1, V = 0, Z = 0

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-23

MNEMONIC Branch Condition Tested Condition

BZ
BNZ
BC
BNC

BHI
BHE

BGT
BGE

BRANCH IF ZERO Z=1
BRANCH IF NOT ZERO Z=0
BRANCH IF CARRY C=1
BRANCH IF NOT CARRY C=0

Unsigned compare conditions (A-B)
BRANCH IF HIGHER A>B
BRANCH IF HIGHER OR EQUAL A>=B
signed compare conditions (A-B)

BRANCH IF GREATHER THAN A>B
BRANCH IF GREATHER OR EQUAL A>=B

Conditional Branch :

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-24

 Tab. 8-11
 Subroutine Call and Return

 CALL :

 RETURN :

 Program Interrupt
 Program Interrupt

» Transfer program control from a currently running program to another service program
as a result of an external or internal generated request

» Control returns to the original program after the service program is executed
 Interrupt Service Program 과 Subroutine Call 의차이점

» 1) An interrupt is initiated by an internal or external signal (except for software interrupt)
 A subroutine call is initiated from the execution of an instruction (CALL)

» 2) The address of the interrupt service program is determined by the hardware
 The address of the subroutine call is determined from the address field of an instruction

» 3) An interrupt procedure stores all the information necessary to define the state of the
CPU
 A subroutine call stores only the program counter (Return address)

AddressEffectivePC
PCSPM

SPSP





][
1 : Decrement stack point

: Push content of PC onto the stack
: Transfer control to the subroutine

1
][




SPSP
SPMPC : Pop stack and transfer to PC

: Increment stack pointer

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-25

 Program Status Word (PSW)
» The collection of all status bit conditions in the CPU

 Two CPU Operating Modes
» Supervisor (System) Mode : Privileged Instruction 실행

 When the CPU is executing a program that is part of
the operating system

» User Mode : User program 실행
 When the CPU is executing an user program

 Types of Interrupts
 1) External Interrupts

» come from I/O device, from a timing device, from a circuit
monitoring the power supply, or from any other external source

 2) Internal Interrupts or TRAP
» caused by register overflow, attempt to divide by zero,

an invalid operation code, stack overflow, and protection violation
 3) Software Interrupts

» initiated by executing an instruction (INT or RST)
» used by the programmer to initiate an interrupt procedure at any desired point in the

program

CPU operating mode is determined from special bits in the PSW

Interrupt
Detect

Determine the
address of ISR

Store Information

Main body of ISR

Restore Information

Interrupt
Return

ISR

External Int.
Internal Int.
Software Int.

PC, CPU Register, Status Condition

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-26

 8-8 Reduced Instruction Set Computer (RISC)
 Complex Instruction Set Computer (CISC)

 Major characteristics of a CISC architecture
» 1) A large number of instructions - typically from 100 to 250 instruction
» 2) Some instructions that perform specialized tasks and are used infrequently
» 3) A large variety of addressing modes - typically from 5 to 20 different modes
» 4) Variable-length instruction formats
» 5) Instructions that manipulate operands in memory (RISC 에서는 in register)

 Reduced Instruction Set Computer (RISC)
 Major characteristics of a RISC architecture

» 1) Relatively few instructions
» 2) Relatively few addressing modes
» 3) Memory access limited to load and store instruction
» 4) All operations done within the registers of the CPU
» 5) Fixed-length, easily decoded instruction format
» 6) Single-cycle instruction execution
» 7) Hardwired rather than microprogrammed control

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-27

 Other characteristics of a RISC architecture
» 1) A relatively large number of registers in the processor unit
» 2) Use of overlapped register windows to speed-up procedure call and return
» 3) Efficient instruction pipeline
» 4) Compiler support for efficient translation of high-level language programs into

machine language programs

 Overlapped Register Windows
 Time consuming operations during procedure call

» Saving and restoring registers
» Passing of parameters and results

 Overlapped Register Windows
» Provide the passing of parameters and avoid the need

for saving and restoring register values by hardware

 Concept of overlapped register windows : Fig. 8-9
 Total 74 registers : R0 - R73

» R0 - R9 : Global registers
» R10 - R63 : 4 windows

 Window A
 Window B
 Window C
 Window D

R 1 5

R 1 0
R 7 3

R 6 4

R 6 3

R 5 8
R 5 7

R 4 8

R 4 7

R 4 2
R 4 1

R 3 2

R 3 1

R 2 6

R 1 5

R 1 0

R 2 5

R 1 6

C o m m o n t o D a n d A

L o c a l t o D

C o m m o n t o C a n d D

L o c a l t o C

C o m m o n t o B a n d C

L o c a l t o B

C o m m o n t o A a n d B

L o c a l t o A

C o m m o n t o A a n d D

R 9

R 0

C o m m o n t o a l l
P r o c e d u r e s

G lo b a l
r e g i s t e r s

P r o c A

P r o c B

P r o c C

P r o c D

Circular Window

10 Local registers
+

2 sets of 6 registers
(common to adjacent windows)

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-28

 Example) Procedure A calls procedure B
» R26 - R31

 Store parameters for procedure B
 Store results of procedure B

» R16 - R25 : Local to procedure A
» R32 - R41 : Local to procedure B

 Window Size = L + 2C + G = 10 + (2 X 6) + 10 = 32 registers
 Register File (total register) = (L + C) X W + G = (10 + 6) X 4 + 10 = 74 registers

» 여기서, G : Global registers = 10
L : Local registers = 10
C : Common registers = 6
W : Number of windows = 4

 Berkeley RISC I
 RISC Architecture 의기원 : 1980 년대초

» Berkeley RISC project : first project = Berkeley RISC I
» Stanford MIPS project

 Berkeley RISC I
» 32 bit CPU, 32 bit instruction format, 31 instruction
» 3 addressing modes : register, immediate, relative to PC

Computer System Architecture Chap. 8 Central Processing UnitChap. 8 Central Processing Unit

8-29

 Instruction Set : Tab. 8-12
 Instruction Format : Fig. 8-10
 Register Mode : bit 13 = 0

» S2 = register
» Example) ADD R22, R21, R23

 ADD Rs, S2, Rd : Rd = Rs + S2

 Register Immediate Mode : bit 13 = 1
» S2 = sign extended 13 bit constant
» Example) LDL (R22)#150, R5

 LDL (Rs)S2, Rd : Rd = M[R22] + 150

 PC Relative Mode
» Y = 19 bit relative address
» Example) JMPR COND, Y

 Jump to PC = PC + Y
» CWP (Current Window Pointer)

 CALL, RET시 stack pointer 같이사용됨
 RISC Architecture Originator

O p c o d e R d R s 0 N o t u s e d S 2

8

3 1

58155

0451 21 31 41 81 92 32 4

(a) R e g i s t e r m o d e : (S 2 s p e c i f i e s a r e g i s t e r)

O p c o d e R d R s 1 S 2

8

3 1

1 3155

01 21 31 41 81 92 32 4

(b) R e g i s t e r - i m m e d i a t e m o d e : (S 2 s p e c i f i e s a n o p e r a n d)

O p c o d e C O N D Y

8

3 1

1 95

01 81 92 32 4

(c) P C r e l a t i v e m o d e :

Architecture Originator Licensees
Alpha DEC Mitsubishi, Samsung
MIPS MIPS Technologies NEC, Toshiba
PA-RISC Hewlett Packard Hitachi, Samsung
PowerPC Apple, IBM, Motorola Bul l G r o u p
Sparc Sun Fujitsu, Hyundai
i960 Intel Intel only (Embedded Controller)

